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Central Elements of Atomic Effect Algebras

Josef Tkadlec1

Various conditions ensuring that an atomic effect algebra is a Boolean algebra are
presented.
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Central elements and the center (the set of all central elements) play an
important role in quantum structures—they represent the “classical part” of a
given model. Considering the axiomatics of quantum structures, it is important to
know the impact of various conditions on the size of the center. In particular, there
are a lot of results of the type that a quantum structure with some properties has
to be a Boolean algebra—see, e.g., Navara and Pták (1989), Müller et al. (1992),
Pulmannová and Majernı́k (1992), Müller (1993), Pulmannová (1993), Pták and
Pulmannová (1994), Tkadlec (1994), Dvurečenskij and Länger (1995), Tkadlec
(1995, 1997), Navara (1997). All the results mentioned above were generalized
by Tkadlec (2004) by a characterization of a central element of an effect algebra.
In this paper, we present conclusions of the results presented at the latter paper for
atomic effect algebras.

1. BASIC NOTIONS AND PROPERTIES

Let us summarize some basic notions and properties of effect algebras. For
proofs and details see, e.g., Foulis and Bennett (1994), Greechie et al. (1995).

Definition 1.1. An effect algebra is an algebraic structure (E, 0, 1,⊕) such that
E is a set, 0 and 1 are different elements of E and ⊕ is a partial binary operation
on E such that for every a, b, c ∈ E, the following conditions hold (the equalities
mean also “if one side exists then the other side exists”):

(1) a ⊕ b = b ⊕ a (commutativity),
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(2) (a ⊕ b) ⊕ c = a ⊕ (b ⊕ c) (associativity),
(3) for every a ∈ E there is a unique a′ ∈ E such that a ⊕ a′ = 1 (orthosup-

plement),
(4) a = 0 whenever a ⊕ 1 is defined (zero-unit law).

For simplicity, we use the notation E for an effect algebra. A partial ordering
on an effect algebra E is defined by a ≤ b iff there is a c ∈ E such that b = a ⊕ c;
such an element c is unique (if it exists) and is denoted by b � a. 0 (1, resp.) is
the least (the greatest, resp.) element of E with respect to this partial ordering. An
orthogonality relation on E is defined by a ⊥ b iff a ⊕ b exists (i.e., iff a ≤ b′). It
can be shown that a ⊕ 0 = a for every a ∈ E and that a cancellation law is valid:
for every a, b, c ∈ E with a ⊕ b ≤ a ⊕ c we have b ≤ c.

Obviously, if a ⊥ b and a ∨ b exists in an effect algebra, then a ∨ b ≤ a ⊕ b.
The reverse inequality need not be true.

Definition 1.2. An element a of an effect algebra E is principal, if b ⊕ c ≤ a for
every b, c ∈ E such that b, c ≤ a and b ⊥ c.

If a is a principal element, then a ∧ a′ = 0 and the interval [0, a] is an effect
algebra with the greatest element a and the partial operation given by restriction
of ⊕ to [0, a]—the orthosupplement operation is given by b 
→ (b ⊕ a′)′.

Our interest will be concentrated on central elements of atomic effect
algebras.

Definition 1.3. An element a of an effect algebra E is central, if

(1) a and a′ are principal,
(2) for every b ∈ E there are b1, b2 ∈ E such that b1 ≤ a, b2 ≤ a′ and b =

b1 ⊕ b2.

The center C(E) of E is the set of all central elements of E.

The center of an effect algebra E is a sub-effect algebra of E and forms a Boolean
algebra. The decomposition property of central elements (condition (2) of Defini-
tion 1.3.) can be formulated by the following way: b = (b ∧ a) ⊕ (b ∧ a′). Central
elements correspond to direct product decompositions of effect algebras.

Definition 1.4. An atom of an effect algebra E is a minimal element of E \ {0}.
A coatom of an effect algebra is the orthosupplement of an atom. An effect algebra
is atomic, if every nonzero element dominates an atom (i.e., there is an atom less
than or equal to it). An effect algebra is atomistic, if every nonzero element is a
supremum of a set of atoms (i.e., of the set of all atoms it dominates).
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Obviously, every atomistic effect algebra is atomic. On the contrary, not every
atomic effect algebra is atomistic—see, e.g., Greechie (1969) or Example 2.4. (Let
us remark that atomic orthomodular lattice is atomistic.)

2. RESULTS

Let us start with the characterization of central elements in effect algebras
proved in Tkadlec (2004).

Theorem 2.1. Let E be an effect algebra. Then a ∈ E is central iff the following
conditions hold:

(1) a and a′ are principal,
(2) b = 0 whenever b ∈ E with b ∧ a = b ∧ a′ = 0,
(3) [0, a] ∩ [0, b], [0, a′] ∩ [0, b] have maximal elements for every b ∈ E.

The condition (2) of Theorem 2.1 is a week form of distributivity—it can be
reformulated by the following way: b ∧ (a ∨ a′) = (b ∧ a) ∨ (b ∧ a′) whenever
b ∧ a = b ∧ a′ = 0. Let us discuss this condition for atomic effect algebras.

Proposition 2.2. Let E be an effect algebra. Let us consider the following
conditions:

(W) For all a, b ∈ E, if a ∧ b = a ∧ b′ = 0, then a = 0.
(W′) For all a, b ∈ E, if a is an atom, then either a ≤ b or a ≤ b′.
(W′′) For all a, b ∈ E, if a, b are atoms and a = b, then a ⊥ b.

The condition (W) implies the condition (W′) which implies the condition (W′′).
If the effect algebra E is atomic, then the condition (W′) implies the condi-

tion (W).
If the effect algebra E is atomistic, then the condition (W′′) implies the

condition (W′).

Proof: (W)⇒(W′): Let a, b ∈ E and let a be an atom. If a ≤ b, then a ∧ b = 0.
Since a = 0, we obtain, according to condition (W), that it is not true that a ∧ b′ =
0. Since a is an atom, it means that a ≤ b′.

(W′)⇒(W′′): Let a, b ∈ E be distinct atoms. Then a ≤ b and, according to
condition (W′), a ≤ b′, i.e., a ⊥ b.

(W′)⇒(W) if E is atomic: We prove that if condition (W) is not fulfilled then
condition (W′) is also not fulfilled. Let us suppose that there are elements a, b ∈ E,
a = 0, such that a ∧ b = a ∧ b′ = 0. Since the effect algebra E is atomic, there
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is an atom c ∈ E such that c ≤ a. Hence, c ∧ b = c ∧ b′ = 0 and therefore c ≤ b

and c ≤ b′.
(W′′)⇒(W′) if E is atomistic: Let a, b ∈ E and let a be an atom. Let us

suppose that a ≤ b. If b = 0 then b′ = 1 ≥ a. Let us consider the case b = 0.
Since the effect algebra E is atomistic, there is a set Ab ⊂ E of atoms such that b =
∨Ab. Since a ∈ Ab, we obtain, according to condition (W′′), that a ⊥ c for every
element c ∈ Ab, i.e., c ≤ a′ for every element c ∈ Ab. Hence, b = ∨Ab ≤ a′, i.e.,
a ≤ b′. �

As a consequence, in atomistic effect algebras all these conditions are equiv-
alent, in atomic effect algebras the conditions (W) and (W′) are equivalent. Let
us show that condition (W′) does not imply condition (W) for nonatomic effect
algebras (Example 2.3) and that condition (W′′) does not imply condition (W′) for
nonatomistic effect algebras (Example 2.4).

Example 2.3. Let X be an infinite set and let B be the Boolean algebra of
all subsets of X factorized over finite subsets of X (i.e., we “identify” subsets
of X with finite symmetric difference). Let us consider the so-called horizontal
sum E of two copies of B, i.e., the union of disjoint copies of B (also with
the ⊕ operation) and identify the least and the greatest elements of both copies.
More formally, we consider the Cartesian product B × {0, 1} and for a equal
to the least or the greatest element of B we put (a, 0) = (a, 1). The effect al-
gebra E (it is even an ortomodular poset) does not contain any atom, hence
the condition (W′) is fulfilled. On the other side, for every a, b ∈ B that are
neither minimal nor maximal elements of B, we obtain that (a, 0) ∧ (b, 1) =
(a, 0) ∧ (b′, 1) is the minimal element of E. Hence, the condition (W) is not
fulfilled.

Example 2.4. Let X1, X2, X3, X4 be pairwise disjoint sets, X be their union, and
suppose X3, X4 be infinite. Let us put E∗ = {X1 ∪ X2, X2 ∪ X3, X3 ∪ X4, X4 ∪
X1,∅, X} and let E consist of all subsets S of X for which there is an element
S∗ ∈ E∗ such that the symmetric difference of S and S∗ is a finite subset of
X3 ∪ X4. Let a ⊕ b = a ∪ b if a and b are disjoint. Then E is an effect algebra
(even an orthomodular poset), the partial order is the set-theoretic inclusion,
and the atoms are X1 ∪ X2 and one-element subsets of X3 ∪ X4. Hence, the
condition (W′′) is fulfilled. Since for the atom a = X1 ∪ X2 and the element
b = X1 ∪ X4 we have a ≤ b and a ≤ b′ = X2 ∪ X4, the condition (W′) is not
fulfilled.

The following statement is a consequence of Theorem 2.1 and Proposition 2.2.
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Corollary 2.5. An effect algebra E is a Boolean algebra if the following condi-
tions hold:

(1) every element of E is principal,
(2) at least one of the following conditions holds:

(2′) E is atomic, and a ≤ b or a ≤ b′ for every atom a ∈ E and every
b ∈ E,
(2′′) E is atomistic, and a ⊥ b for every pair of distinct atoms
in E,

(3) [0, a] ∩ [0, b] has a maximal elements for every a, b ∈ E.

We derived the previous result using the meaning of the condition (2) of
Theorem 2.1 in atomic effect algebras. However, we may try another attempt—
to study when an atom is central and when the centrality of atoms implies the
centrality of all elements of an effect algebra. Let us start with the properties of
atoms.

Lemma 2.6. Let E be an effect algebra and let a ∈ E be an atom.
(1) The atom a is principal iff a ⊥ a (a is not isotropic).
(2) If the coatom a′ is principal, then for every element b ∈ E either a ≤ b

or a ≤ b′ (i.e., a is principal).

Proof:
1) If an element a ∈ E is both isotropic and principal, then a ⊕ a ≤ a =

a ⊕ 0 and using the cancellation law we obtain a ≤ 0. Hence, a principal atom
is not isotropic. Let an atom a be not isotropic and let b, c ∈ E, b, c ≤ a and
b ⊥ c. Since a is an atom, we have b, c ∈ {0, a}. Since a is not isotropic, we have
{b, c} = {a}. Hence, either b = c = 0 and then b ⊕ c = 0 ≤ a or {b, c} = {0, a}
and then b ⊕ c = a ≤ a.

2) Let us suppose that there is an element b ∈ E such that a ≤ b and a ≤
b′. Hence b, b′ ≤ a′ and b ⊕ b′ = 1 > a′ and therefore a′ is not principal. (The
principality of a follows from putting b = a, obtaining thus a ≤ a′ and considering
part (1) of this lemma.) �

Lemma 2.7. Let E be an effect algebra, a, b ∈ E, and a be an atom. Then the
following conditions are equivalent:

(1) There are b1, b2 ∈ E such that b1 ≤ a, b2 ≤ a′ and b = b1 ⊕ b2.
(2) a ≤ b or a ≤ b′.

Proof: Let us suppose that the condition (1) holds and that a ≤ b. Hence, b1 = 0,
b = 0 ⊕ b2 = b2 ≤ a′ and therefore a ≤ b′.
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If a ≤ b then b = a ⊕ (b � a), (b � a) ⊥ a and therefore (b � a) ≤ a′. If
a ≤ b′ then b = 0 ⊕ b, b ≤ a′. �

The following statement is a consequence of Theorem 2.1, Lemma 2.6 and
Lemma 2.7.

Proposition 2.8. An atom a of an effect algebra E is central iff the following
conditions hold:

(1) a′ is principal,
(2) a ≤ b or a ≤ b′ for every element b ∈ E.

(The “or” at the second condition might be considered exclusive.)

The following proposition (slightly reformulated here) was published by
Foulis and Bennett (1994, Theorem 4.11).

Proposition 2.9. If E is an atomic effect algebra such that every subset of E has
a maximal element, then every nonzero element of E is a finite sum of atoms.

Proof: Let us suppose that an element b ∈ E \ {0} is not a finite sum of atoms
and seek a contradiction. Since E is atomic, there is an atom a1 ∈ E such that
a1 ≤ b. Since b is not a finite sum of atoms, we have b � a1 = 0 and therefore
there is an atom a2 ∈ E such that a2 ≤ a � a1. Since b is not a finite sum of
atoms, we have b � (a1 ⊕ a2) = 0 and therefore there is an atom a3 ∈ E such
that a3 ≤ a � (a1 ⊕ a2). Continuing in this procedure, we obtain a sequence of
(not necessarily distinct) atoms a1, a2, a3, . . . ∈ E such that a1 < a1 ⊕ a2 < a1 ⊕
a2 ⊕ a3 < · · · < b, hence the set {a1, a1 ⊕ a2, a1 ⊕ a2 ⊕ a3, . . .} does not have a
maximal element—a contradiction. �

The following statement is a consequence of Propositions 2.8 and 2.9.

Corollary 2.10. An effect algebra E is a Boolean algebra if the following con-
ditions hold:

(1) every coatom is principal,
(2) E is atomic, and a ≤ b or a ≤ b′ for every atom a ∈ E and every b ∈ E,
(3) every subset of E has a maximal element.

Using two different ways we came to results with similar conditions. Com-
bining these results we obtain the following statement with a bit complicated
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structure. It seems to be an open question whether there might be introduced some
reasonable notions such that the formulation will be more simple.

Theorem 2.11. An effect algebra E is a Boolean algebra if the following condi-
tions hold:

(1) at least one of the following conditions hold:
(1′) every element is principal, and [0, a] ∩ [0, b] has a maximal element
for every a, b ∈ E,
(1′′) E is atomic, every coatom is principal, and every subset of E has a
maximal element,

(2) at least one of the following conditions hold:
(2′) b = 0 whenever a, b ∈ E with b ∧ a = b ∧ a′ = 0,
(2′′) E is atomic, and a ≤ b or a ≤ b′ for every atom a ∈ E and every
b ∈ E,
(2′′′) E is atomistic, and a ⊥ b for every pair of distinct atoms in E.
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